- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Christie, Mark_R (3)
-
Searle, Catherine_L (2)
-
Ciubotariu, Ilinca_I (1)
-
Gutierrez, Stephanie_O (1)
-
López‐Cruz, Alana (1)
-
McNickle, Gordon_G (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract From genes to communities, understanding how diversity is maintained remains a fundamental question in biology. One challenging to identify, yet potentially ubiquitous, mechanism for the maintenance of diversity is negative frequency dependent selection (NFDS), which occurs when entities (e.g., genotypes, life history strategies, species) experience a per capita reduction in fitness with increases in relative abundance. Because NFDS allows rare entities to increase in frequency while preventing abundant entities from excluding others, we posit that negative frequency dependent selection plays a central role in the maintenance of diversity. In this review, we relate NFDS to coexistence, identify mechanisms of NFDS (e.g., mutualism, predation, parasitism), review strategies for identifying NFDS, and distinguish NFDS from other mechanisms of coexistence (e.g., storage effects, fluctuating selection). We also emphasize that NFDS is a key place where ecology and evolution intersect. Specifically, there are many examples of frequency dependent processes in ecology, but fewer cases that link this process to selection. Similarly, there are many examples of selection in evolution, but fewer cases that link changes in trait values to negative frequency dependence. Bridging these two well‐developed fields of ecology and evolution will allow for mechanistic insights into the maintenance of diversity at multiple levels.more » « less
-
Searle, Catherine_L; Gutierrez, Stephanie_O; Ciubotariu, Ilinca_I; López‐Cruz, Alana; Christie, Mark_R (, Ecology)Abstract As natural populations continue to decline globally, direct forms of intervention are increasingly necessary to prevent extinction. One type of intervention, known as demographic rescue, occurs when individuals are added directly to a population to increase abundance and ultimately prevent population extinction. However, the role of infectious disease in demographic rescue remains unknown. To examine the effects of pathogens on demographic rescue, we used a host–pathogen system with the aquatic crustaceanDaphnia dentiferaas the host and the fungusMetschnikowia bicuspidataas the pathogen. We constructed a randomized 3 × 2 factorial experiment with three rescue treatments (none, low, high) and two pathogen treatments (unexposed, exposed), where the pathogen was introduced via infected individuals during rescue events. We found that adding more individuals to demographically depressed populations increased abundance over the short term; highly supplemented populations initially had 62% more individuals than populations that had no introduced individuals. However, by the end of the experiment, populations that did not have any individuals introduced averaged 640% higher abundance than populations where infected individuals had been added. Thus, the introduction of infected individuals can result in worse demographic outcomes for populations than if no rescue is attempted.more » « less
-
Searle, Catherine_L; Christie, Mark_R (, Evolution)
An official website of the United States government
